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ABSTRACT

The objectives of this work are to:

Formulate the static problem of a compliant riser
idealized as a slender non-rotationally uniform rod
with bending, extensional and torsional degrees of
freedom.

Present an embedding technique used to solve the
general two-dimensional and three-dimensional static
problems of a buoyant compliant riser.

Present examples from the static analysis of buoyant
compliant riser configurations in the presence and
absence of external currents.
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NOMENCLATURE

A ~ rA rA

Bb

mean internal fluid speed; for our application

2
pc «p

centroid of a cross-section

static rotation matrix

normal mean drag and tangential frictional

coefficients

drag coefficient of a buoyancy module for flow

C
0

CD, Cf

I
C

parallel to g
0

maximum dimension of a cross-section

dimensions of the cross-section of Figure 2-1

Young's modulus

extensional rigidity

maximum and minimum bending rigidities of a

cross-section

effective rigidities Et~~ -c J~~;EI -c J",~1

EA

E !VV

EP  EPO
e ' e

total inner and outer cross-sectional area of

riser tubes; total outer cross-sectional area

of riser tubes and buoyancy modules

buoyancy per unit length of buoyancy modules

in water

p gA for y<h� and zero otherwise



external hydrodynamic force per unit length

 excluding gravity effects!:
H

acceleration of gravity

torsional and effective torsional rigidityGIP,GI P
e

GI � c~ J~~
1

h.,h
1 W

J;J,R'

and internal fluid

J.= diag[J~~ J~~ JIn]1 ' 1 ' 1

where diag[ ] stands for diagonal matrix

unstretched riser length, buoyancy module

length

L, Lb

m ~ m

M

 W +W !/g,  W +W.+W !/g
b

external hydrodynamic moment per unit length

internal overpressure due to well  i.e. total

internal static pressure m.inus p;!

internal pressure due to gravity, p.g h, -y!
1 1

internal fluid and salt water elevations above

the axes origin

mass inertia per unit length tensor of riser

material and buoyancy modules



external pressure due to gravi ty,p�g h�-y!

tension in riser material

wetted perimeter of a cross-section,

p

P

e

+ C  q -A ! r'C<Lb

s*, s

shear force in the g and q direction

stretched and unstretched length of the

centerline

time

effective tension

+ + 7
array of unit vectors [a, j, k]

7
array of unit vectors I<p � 00]"o

current velocityV

V = [V�, 0, V ].V =
[VQ, V~, Vq! .U"0' 0' o ' o

IO, V, V,!. U",v<>

effective weight per unit length,

w = W +W. +W -B -B*
R 1 b b

W average effective weight per unit leng'h in

water

buoyancy module material, internal fluid and

riser materials weights per unit length

coordinates of C in the inertial frame

internal fluid and salt water densities
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Euler angles

vector rate of rotation of C< q frame along

the rod,



INTRODUCTION AND OUTI.INK

Compliant risers are assemblages of pipes with very small

overall bending rigidity used to convey oil from the ocean

floor or a subsurface buoy to a surface platform. A compliant

riser is permitted to acquire large static deformations

because of its small bending rigidity and readjusts its

configuration in response to large slow motions of the

supporting platforms, to which it is rigidly connected,

without excessive stressing. Compliant risers have been used

successfully in protected waters in buoy loading stations for

tankers. Extensions of shallow water concepts have been

recently proposed by the industry as alternatives to

conventional production risers, because they simplify the

overa11 production system.

The purpose of this work is to:

Formulate the static problem of a compliant riser
idealized as a slender non-rotationally uniform rod
with bending, extensional and torsional degrees of
freedom.

Present an embedding technique to solve the general
two-dimensional and three- dimensional static
problems of a buoyant compliant riser.

Present examples from the static analysis of buoyant
compliant riser configurations in the presence and
absence of external currents.



12

This work is organized as follows:

Chapter 2 provides a complete formulation of the
static problem together with a summary of the
assumptions hecessary for its derivation. This
Chapter provides the governing equations and
boundary conditions and explicit expressions for the
external loads.

Chapter 3 provides a numerical solution algorithm
using an embedding technique.

Chapter 4 provides numerical results for a buoyant
riser configuration with uniformly distributed
buoyancy modules, and

Chapter 5 provides numerical results for a buoyant
riser configuration with a single large buoyancy
module.



PROBLEM FORMULATION

2.1 Model Assumptions

A mathematical model for the static behavior of slender

elastic rods undergoing large deformations with small strains

i.s given in Love [1] and Landau and Lifshitz [2]. The
modification to account for dynamic effects and the presence

of a heavy fluid inside and outside the tube modelled as a

slender rod can be found in Nordgren [3] and Patrikalakis [4j.

Methods for the computation of the motion of elastic rods with

equal principal stiffnesses and with torque applied at the
ends can be found in Nordgren [5,3l and without torque in

Garrett [6].

Patrikalakis and Chryssostomidis [7] extended the

mathematical model derived in Nordgren [3] and Patrikalakis

[4] to allow the computation of non-linear motions of an

assemblage of tubes modelled as a non-rotationally uniform

slender elastic rod with space varying torque. Their model

also accounts for the effects of a steady internal flow.

In this work, we specialize the model developed in

Patrikalakis and Chryssostomidis [7] to allow the computation

of static responses. The static equations are derived from
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the general dynamic equations by setting the components of the

velocity and angular velocity equal to zero and replacing the

external loads with their mean values. The mean values of the

external loads may, however, strongly depend upon the dynamic

response, such as in the case of vortex induced dynamic lift,

see Patrikalakis and Chryssostomidis [8f9]. Given that the

dynamic response depends upon the static response,  e.g. upon

the static tension!, statics and dynamics are, in fact,

non-linearly coupled. We believe that this coupling may be

analyzed with an iterative procedure and we, therefore,

consider the static loads as given functions of the static

orientation and position of the riser and the external

excitation.

Following Patrikalakis and Chryssostomidis [7], we summarize

the basic assumptions of our mathematical model for the static

problem.

l. The compliant riser is modelled as a single
non-rotationally uniform rod rather than as an
assemblage of interacting rods or shells. We make
this idea'.ization in order to reduce the degrees of
freedom and to allow analysis of the global
behavior of our system with the curiently available
information on the structural characteristics of
such structures,

2. The materials employed in the construction of
different layers of compliant risers are assumed to
be homogeneous, isotropic and linearly elastic.

3. Strains are assumed to remain uniformly small
although deformations may become large.

4. Shearing deformations are neglected, Rayleigh
slender beam theory, see Crandall et al [10].

5. Thermal effects are neglected.
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=  G~sing + 0 cosg !/case

0 = Q cos> - Q sin>
Os 0 0 0 0

= 2 +P sin0
Os 0 os 0

�. 9a!

or using equat ion �. 7!

= 0 +tane  A~sing +A cosg !
os 0 0 0 0 0 0

�.9b!

4. Three equations relating the derivatives of the Cartesian

coordinates x ,y and z with the Euler angles:0' 0 0

�.10!x = �+e !cos9 cosf
OS 0 0 0

�.11!y = �+e !cose sing
Os 0 0 0

z = -�+e !sin9
OS 0 0

5. The equation for the stretched arc length s*
0

s* = 1+e
OS 0

The elements, c , of the complete 3 x 3 static rotation0

1J
ll

matrix, C , between U and U defined by
0 0

where subscr ipt or superscript o denotes static quantities and

subscript s denotes derivative with respe=t to the unstretched

arc length, s, of the centerline. To simplify the notation,

subscript o has been omitted in the superscripts q , 6 and
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are given belov in terms of the static Euler angles:

cp = cps6 costI
11 0 0

�.14.1!

C12 = C059 sin< �.14. 2!

c13 -sln6 �. 14. 3!

21 � 4pcos40- cos4 sing �.14.4!0

0c22 sin6 sin4 sin4 + cosg cosy   14 5!
0 0 0 0

0C23 = COS6 sing �. 14. 6!

0c31 sin6 cosg cosg + sing sing � 1 4 7!
0 0 p 0

0c32 sin6 cosg sing - sing cosf �,'l4.8!
0 0 p p p

�,.14.9!cd cose cosy
0 p

A geometric interpretation of the Euler angles used in th's
vork can be found in Patrikalakis and Chryssostomidis [71.

To complete the set of governing equations, the constitutive

relation betveen T and e needs to be used:
0 0
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T-"EAe
0 0

In the case of the general three-dimensional static problem

N = 13 boundary conditions are necessary to complete the
0

statement of the problem. For the case of a buoyant rise.

configuration, de Oliveira and Morton [ll] and de Oliveira et

al l12], an appropriate set of boundary conditions involves

the prescription of p , 8 , y , x0 , y0 and z at s=0 and s=I
0 0 0

and s*�!=0. For the case of a catenary configuration,

Panicker and Yancey [13], the above boundary conditions at s=0

need to be modifi ed to also express the equilibrium of

interaction forces and moments and kinematic compatibility

with the lower rigid riser section.

2.3 External Forces and Moments

and M is,
Ho

The prediction of the external loads FH
Ho

external static force FH due to a current. We assume first
Ho

perhaps, one of the more important factors in a successful

analysis of the static behavior of compliant risers. Until

rational methods allow the prediction of these loads in

separated flows, approximate estimates based on strip theory

and experimental two-dimensional flow models may be used for

design purposes, see Patrikalakis [4] and Patrikalakis an

Chryssostomiiis I.8]. Due to lack of appropriate experimental

data for compliant riser geometries, we adopt the following

procedure based on Sarpkaya and Isaacson jl4] to estimate the
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To simplify our calculations we further assume that we can

approximate a compliant riser cross-section as in Figure 2-1

below

Ficiure 2-1: Cross � section Idealization

for our estimates of D~ . We observe that the cross-section

in Figure 2-1 reduces to a circle if D =D and will provide a

correct estimate of D< for an arbitrary number of tubes of

equal diameter arranged along the a axis consecutI.vely in a

series. From the assulmed geometry we obtain:

D<= D -D"!~cosa +0"

where

�.22!

Using �.21! to �.22!, we can reduce �.19! and �.20! to
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F = 0.5p C V L D -D"!fV I + D fV "f]
Ho ' wDo o 0

�.23!

F~ = 0.5p C V"L D~-D"!fV~f D"fV~"f]
Ho ' wDo o 0

�.24!

the   and q directions respectively. In the numerical

implementation, D and D are functions of s. We can

therefore model risers, the cross-sections of which are

multiple adjacent tubes in a series possibly covered with

circular buoyancy modules over part of their length.

For the evaluation of the drag force parallel to t;o we

distinguish two separate contributing mechanisms. First, a

frictional component which can be evaluated from:

F =0.5p P~~ s!CfV [V �.25!

wher e P~"  s! is the length of the wetted perimeter of the

cross- se=tion and C a frictional coefficient which is at

least two orders of magnitude less than CD . Second, we

distinguish a separation drag parallel to q due to presence0

of buoyancy modules. It is possible to incorporate this

effect in an equation which provides the total drag force in

the 0 direction, while keeping the form of equation �.25! by
0

writing:

Elongated compliant riser sections are expected to

experience a small  static! lift orthogonal to g and V~",0 0

which is however neglected in this work due to lack of

appropriate experimental data. In all subsequent analysis
�.23! and �.24! will be used to predict the static forces in
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FH =0.5P�P~~  !C V [V �,26!

where P  s! is an "equivalent" wetted perimeter defined by
e

�.27!

where C is a separation drag coefficient for the buoyancy

modules for a flow parallel to g , Ab, A the cross-sectional
0 0

area of the buoyancy modules and riser tubes and L the Length

of the buoyancy modules.

compliant riser we can set A =A and therefore get P  s!
0 e

P  s! to recover �.25!. Within the part of the rise.-

covered by buoyancy modules, equations �.26! and �.2'7! also

allow a uniformly distributed force due to separation.

Finally, we need to provide estimates for the external

torque per unit length, j . Within ideal flow theory, the
HO

presence of M can be explained because the cross-section is
Ho

not, in general, symmetrical about an axis orthogonal to V0

on the g q plane, see Newman [l5]. Due to lack of
0 0

experimental data for real flow conditions, we estimate the

external torque per unit length from potential theory, Newman

[ l5], using:

M' �  m~ "! V<V<
Ho a"a 00

�.28!

where m and m are the added masses per unit length in the
a a

60 and n directions. The values of the added masses are

considered functions of s in our implementation and therefore

ppp s! PQP  ! + D b 0
C' A -A !

Cf-L~

Within the bare part of the
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allow H>0 to become zero for circular cross-sections.
Denoting by g the angle between g and V " , equation �.28!

0 0

can be reduced to the following form:

 q 2M< =0.5 m -m !sfn2a V~" 

This equation indicates that for a particu'ar cross-section

and current velocity, the external torque reaches an extremum

when cr =�n-1! m /4 for n=1,2,3,4.

2.4 Non-Dimensional Three-Dimensional Equations

It is convenient to convert the governing equations to a

first order system of ordinary differential equations of the

following symbolic form:

w =f s,w!

~here w  s! is the solution vector and 7 a given {non-linear!
0 0

function of w and s. For the general three-dimensional

static problem we choose:

with N = 13 unknown scalar variables. The first twe'lve

variables are coupled in the governing equations, while s* s!
can be determined from �. 13! and �. 15! once the computation

of T is completed.
0

Before proceeding to bring the governing equations in the

form �.30!, it is convenient to introduce non-dimensional

variables. Forces are non-dimensionalized by W L, where W> is
a
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5  s!=W L /GI  s! � 32!

8~ s! = W L /EI~~ s! �. 33!

8" s! = W L /EI  s! �.34!

y s! = W L/EA s! �.35!

v  s,y ! = W s,y !/W �.36!

and from now we denote non-dimensional quantities with the

same symbol as dimensional quantit ies. If we wish to beefer to

a dimensional quantity, we will state this explicitly. The

resulting non-dimensional equations describing three-

dimensi.onal statics of a compliant riser with torsion are:

q~ n -q~n~-F ~
os 12 o o o o Ko

�.37!

o +<v<z T
os 2Z o o o o Ho

�.38!

the aver age ef feet ive weight per unit length of the riser

fully submerged in water. Lengths are non-dimensionali=ed by

L the unstretched length of the riser. We also introduce the

following non-dimensional parameters;
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g � o + T ~K q ~Q
os 32 0 0 0 0 Ho

g I M H   1 / 8 1 / g !   1 / 8 ! s 0 j

= e~l.a -�/P-1/3"!~'~'-�/e ! n j

n~ = -8"Lq~- ]/gt'-]/S !n n �/8 !,n,"j

= � s~ng +Q cosg !/cose
OS 0 0 0 0 0

e = 2 cos4 -2 sinf
Os 0 0 0 0

= 6 +tane [n s~ nq +n"cos~ ]
OS 0 0 0 0 0 0

x = �+yT !cll

y = �+ yT ! c12

z = �+yT !c13

s* = l»T
OS 0

�.3S!

�.40!

�.41!

�.42!

�.43!

�.44!

�.45!

�.46!

�.47!

�.4e!

�.4s!



26

where the elements c.. of the static transformation matrix can0

1J

be evaluated from �.14! in terms of the Euler angles.

The boundary conditions appropriate for a buoyant riser

configuration, such as in de Oliveira and Morton [ilj, are:

p ! y �! z �! s �! 0 �.50!

�,sz!

�.s4!

2.5 Non-Dimensional Two-Dimensional Equations Without Torsion

In this case the solution vector �.31! reduces to N = 7
D

non-trivial components:

p L p%0O ~ o'I f ! ~ O S/0 0 J �.55!

T = pslng + g A -F
os o o o Ho  z.s6!

~os ~ ~o 0 o Ho �.57!

The non-dimensional governing equations describing the
j

two-dimensional static problem without torsi. on in the

plane obtained from �.37! to �.49! using �.14! are:
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p[q~ +  ]yg"I! g~]
OS 0 S 0

�. 58!

�.59!

�.eo!x = �+YT !cost
OS 0 0

�.e> !=  i+Yr !Sine
OS 0 0

�.e2!s* = I+'YT
OS 0

�.e3!x �! = y �! = s*�! = 0

�.e4!e, o! = 4,

�. 65!x  t! = x , y  I ! = yT

�.ee!

In the two-dimensional case, the q and   components of the
'+

external force due to current V y ! = V� y !i reduce to:

The boundary conditions appropriate for a buoyant riser

configuration, such as in de Oliveira and Morton [ii!, are:
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NUMERICAL SOLUTION ALGORITHM

3. 1 Introduct ion

General methods for the solution of two-point boundary value

problems can be found in Keller [l6], Ferziger [17] and
Pereyra [18]. We start our discussion from the solution of

the general three-dimensional static problem with torsion

described by equations �.37! to �.49!. In this work, e

solve equations �.37! to �.49!, supplemented by boundary

conditions �.50! to �.54!, by embedding our problem into a

more general class of boundary value problems. Symbolically

our problem:

w'=f s,w!, g[w�!,w l !! = 0

where prime denotes derivative with respect to s,

w  s! w  s!...wN s!! is the solution vectorw= l l 2

T ~Tf-[fl,f2...fN! 9=[9l 92 9N!
0<s<l, and [ ! denotes transposeT
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� !' in equations �.56! and �.57! by cp , and

xT and yT in equations �.65! by x' + E  x � x' !
and yT + < y � y' !, ~here xT and yT are de/ined in
Section 3.2.

In this manner, we obtain an initial problem, '=0, which

is easier to solve than the actual problem   c =l!,
so we can start our solution process without
difficulty, see Section 3.2, and

expresses the balance of all, major external and
restoring forces of the original problem correctly,
everywhere in 0 < s < 1

For the case of a buoyant riser in a moderate to strong

current, the major external force is the normal drag, and the

major restoring force is the effective tension except near the

ends where bending becomes also important. Using our

embedding technique, we obtain an initial problem, c =0, which

corresponds to a neutrally buoyant riser in a moderate to

strong constant current. This idealization, therefore, gives

us a correct estimate of the orde~ of magnitude of both

external and restoring forces.

For the case of a buoyant riser in a weak or zero current

our embedding technique involves the following steps:

we determine the response of the actual riser in a
fictitious moderate constant current, V . , using
the procedure outlined above, and

X1

we replace V  y ! IV  y ! I in equations � ~ 69! and
� ' 70! by
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In the case of a weak current the two step process is

necessary in order to determine an initial configuration for
the second step which includes the effects of effective

weight, which now plays a significant role.
The solution of equation   3.72! was obtained using a

non-uniform grid finite difference method, see Pereyra [18].
The non-uniform grid was necessary to permit an efficient
resolution of boundary layers near s=0 and s=l, see

Patrikalakis [4]. The solution of the finite difference

equations is based on a modified Newton's iteration method
coupled with a deferred correction technique also described in
Pereyra [18]. This method uses an approximate solution of the
problem and yields a more accurate solution which makes the
absolute error less than a prespecified tolerance. During the

solution process, additional grid points may be inserted
automatically to reduce and to equidistribute the error on the
final mesh. Our code uses the Fortran library NAG [20] and

has been implemented on an IBM 370/168 mainframe. All
arithmetic was done in double precision �S decimal digits!.

3.2 Initial Asymptotic Approximation of the Two-Dimensional

Solution

In this Section, we derive an approximate solution o. the

two- dimensional static problem for ~=0 corresponding to a

neutrally buoyant compliant riser in a constant current. For

simplicity we neglect frictional forces because of their sma'1
effect in the determination of effective tension. In additii>n
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we use the mean frontal diameter, D , in the estimation of

the normal drag force. Finally we assume that Y=O because

the extensional rigidity of the riser is very large. With

these assumptions the resulting governing equations are:

= q~ n', q~ = -T a" + +sin y2

OS 0 0 OS 0 0 0
�.77!

<n <n[�K+ ]/gv! >n] ~ qR
Os 0 S 0 OS 0

�.78!

�. 79!x = cosy, y = sing
OS 0

wher e

o ~ 5P~D'LD v Iv I/w  .3. 80!

be

0  s! = y  s! + y, s!+y  s! �.81!

wher e

y  s! = Arctan[-1/ xs+c!]+6
0

�. 82!

y  s! = [y -y  o!]exp<-s[ B  o!] �. 83!

A uniform leading order approximation of 40  s! can be found by

simple boundary layer theory, see Carrier and Pearson f211, to
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y   ! = [y -y �!] p -�- ![T g �!]2 0 q 1/2
�. 84!

6=0 if - as+c!>0, 6=~ if - ! s+c!<0 �.85!

X = ~/T
0

�.86!

c is a constant of integration and T the leading order
0

estimate of the tension, which in our case is independent of

s.

Imposing the boundary conditions �.65! and neglecting the

contributions of 4  s! and y  s!, because they are small, we1 2
0 0

obtain

�/X}[l/sine �!-1/s'"<g  !] "T Q.87!

�/x}ln tan[! �!/2]/tan[! �!/2]!-yT = 0 �. 88!

approximations for T , Q , Q", x and y . When we integra'e
0

equations � . 79! using � 81!, we obtain x  l! =xT and y  l ! =y'0 0 T

Equations   3.86! to   3.88! are three algebraic equations for

c and T whi;h are solved by Powell's hybrid method, see
0

Powell [22] a~d therefore equatio~ �.8l! is now fully

determined. This in turn allows us to obtain leading order
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where x' and y' ar e close to but not identical to xT and yT

This small discrepancy is rectified by our embedding procedure

in which we replace x by x' + e  xT-x ! and y> by yT+

 y,-y, !
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NUMERICAL RESULTS FOR A BUOYANT R!SER CONFIGURATION WITH

UNIFORMLY DISTRIBUTED BUOYANCY MODULES

together as in Figure 4-1

The overall riser characteristics are: L«88.392 m;

EI =12.2EI =3 3 kNm
nn 2

EA=267 MN;W=W =2.92 N/m;
a

kN m2;GIP=0.582 eMN.m DR=0. 31 m; D «0.20 m;

cm ; p.«820 kg/m ; p=3.42 3

m =40.47 kg/m; m~ =82.44 kg/m; n~
A «237.4 cm A. =115.4

2

0 1

5 MPa; c«0 ~

«50.32 kg/m;m=49.93 kg/m;

vertical distance of lower support, s=0, from ocean floor is

7.62 m. The value of the effective weight was taken constant

because it was assumed that buoyancy is provided by small

uniformly distributed modules, Patrikalakis [4]. If this is

not the case the local value of W should be used. For the

same reason, effective constant values of D , D , P ", m, m<,
ma and m> are used in this paper. Due to presence of strain

relief units at the ends, the following values of bending and

torsional rigidities at s«0 and s«L were used:

The structural design details of the buoyant compliant riser

analyzed in this wor k can be found in de 01 iveira and Morton
[ll]. The riser is made up of two flexible tubes with inner

diameter of 85.7 mm and outer diameter of 122.9 mm, clamped
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BUOYANCY COLLAR AND BUNDLE CLAMPS

ae er
SECTION "88",'

BUNDLE DATA

FLEXIBLE HOSE OD = 4.60"

CONTROL LINE OD 2.40"

Ficiure 4-1: Buoyant Compliant Itiser Concept. Proposed In [11]
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2 P 2kN.m; EI =24.4 kN.m; GI =1.164 MN.m . These rigidities

vere assumed to decay linearly to the previous values within

10 m from s=0 and s=L. 1n addition, for all excitatiqn

conditions studied in this paper we used 4 > = 4T = 90 degrees;

e = 0; z = 0 ; and C = 1 and C = 0.05.
T ' T ' p f

The excitation cases we investigate in this paper correspond

to the expected minimum and maximum water depth for the

application described in de Oliveira and Morton Illa'. In Case

1, the water depth was 80.77 m; h.,=h. =73.15 m; xT=O and
1

y =70.10 m. In Case 2, the water depth vas 92.96 m;

h =h.=85.34 m; x =6.10 m and yT=82.30 m. For Case 1, two
W t

tvo-dimensional and four three-dimensional excitation

conditions were examined. Condition 1 involves tvo-

dimensional excitation  without torsion! by a unidirectional

linear strong current with V �!=1.03 m/s and V  h� !=1.55 m/s.
X X

In this condition, Q L!=0, leading to a two-dimensional

configuration without torsion. Condition 2 corresponds to

4 L!=0 and a zero current and represents a "buckled"
0

tvo-dimensional configuration of the riser due to its own

veight in the XY plane. Figures 4-2 and 4-3 shov the results

of Case 1, Condition 1 and Figures 4-4 and 4-5 the results of

Case 1, Co~dition 2, obtained by executing our tvo-dimensional

static program. For Case 1, Condition 1, the initial

approximation fo. our embedding technique vas obtained using

the method of Section 3.2 for a constant current equal to 1.29

m/s, the mean value of the actual current. For Case 1,

Condition 2, the initial approximation for our embedding



technique was obtained using the method of Section 3.2 for a

weak constant current equal to 0.1 m/s. Our embedding

procedure, in both cases slowly applies the effective ~eight

forces and modifies the current to the actual profile  linear

and zero current, respectively!. Figures 4-2 and 4-4 show the

displacement x  solid line! and the angle |I <dashed line! as
0 0

a function of yo . Figures 4-3 and 4-5 show the component of

the rate of rotation 0  solid line! and the effective tension
0

T  dashed line! as a function of y . ALL variables plotted
0 0

are non-dimensional.

In Case 1, Condition 1 we observe the creation of sharp

boundary Layers, the extent of which can be clearly seen from

the plot of 4 versus y , Figure 4.2 . Inside these layers,
0 0

the effective tension, T , and the component of the rate of
0

rotation, A, change very rapidly while for the remainder ofn

0

the riser Length these two quantities are practically constant

as can be seen from Figure 4.3 . Effective tension outside

the boundary Layers remains essentially constant, because, as

we said earlier, our system is highly buoyed. The curvature,

outside the boundary layers remains essentially constant

because the effective tension and external force exhibit small

variations with s. The maximum effective tension for Case 1,

Condition 1 has been estimated to be 7.974 kN and the maximum

tension 47.1 kN. The tension due to internal overp ressure

amounts to 39.8 kN which shows the importance of the internal

overpressure in the estimation of tension. Note, however,

that tensile strain is directly related to effective tension,



~Fi ure 4-2: X,4 Veraua yoFOr CaSe 1, COnditiun 1
p 0

~Fi u re 4 � 3: ,T Versus y For Case 1 , Condition 1
0 ' 0 0
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Ficiure 4-4: x,4 Versus y For Case 1, Cond it iou 2
0 0

~Fi ure 4-5: Q,T Versus y For Case 3.,Condition 20' 0 0



see equation �.15!, and, therefore, internal overpressure

affects hoop stresses primarily, at least within tne

assumptions of equation �.15!. For a discussion of these

assumptions see Appendix C, Patrikalakis and Chryssostomidis

[7J. The minimum bending radius for Case 1, Condition 1 is

0.90 m. The value of the minimum bending radius is an

used to control the configuration of the riser . In

particular, the effect of non-uniform buoyancy distribution

may be studied, with the objective of keeping the riser as

vertical as possible for the condition of zero external

current. As can be seen from Figure 4-5, the effective

important design parameter because it affects the structural

integrity of the riser and our ability to access the well, so

care must be taken to select the appropriate strain relief

� units to control bending at the ends.

In Case 1, Condition 2, we observe the creation of a

moderately sharp internal layer around s=0.16 where the

bending moment rapidly undergoes change of sign and reaches an

extreme value. The corresponding minimum bending radius is

7.65 m which is much less critical than the bending radius

encountered in Case 1, Condition 1 involving a strong current.

This occurs because the value of the effective weight is very

small. However, the riser is nearly horizontal within the

internal layer referred to above and this may affect our

abi lity to easily access the well. The amount and

distribution of buoyancy and the top offset are the important

parameters in the present condition of zero current and can be



our initialprevious three-dimensional solution as

approximation and so on. The results of our three-dimensional

excitation conditions are shown in Figures 4-6 to 4-15 . In

Figures 4-6 and 4-7 we plat x and z versus y , respectively.
0 0 0

In Figure 4-8 we plot x versus z . In Figures 4-9 ta 4-ll we
0 0

plot 4 , e and q versus y , respectively. In Figure 4-12 we
0 0 0 0

plat T versus y and in Figures 4-13 to 4-15, Q, Q~ an3
0 0 0 0

versus yo. All variables plotted are non-dimensional.

Fram Figures 4-6 to 4-8 , we observe that away from the ends

the riser nearly follows the direction of the current and its

centerline is fairly close to a planar curve. This occurs

tension varies between -0.4453 M L or 0.12 kN at s=0 and
a

0.5547 W L or 0.14 at s=L becoming positive near s=0.39. The
a

maximum tension occurs at s=L and is equal to 39.5 kN and is

almost entirely due to the internal pressure.

For the water depth of Case 1, and in addition to the two

two-dimensional static configurations, we also studied the

effect of rotating the linear current of Condition 1 ta

O =12, 30, 60 and 90 degrees with respect to the XY plane

 i.e. from the +X to the -Z direction! with a corresponding

platform rotation 0  L!=10, 25, 25 and 25 degrees. The

solution for the first three-dimensional excitation condition

  8 =12 and g L!=10 degrees! was obtained using the twa-
C

dimensional solution for Case 1, Condition 1 as our initial

approximation for the starting-up of the embedding procedure.

The solution for the next three-dimensional excitation

condition   0 =30 and g!L!=25 degrees! was obtained using the
C
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This is an indication of its highresist this changers

flexibility. Figures 4-9 to 4-11 clearly indicate the extent

of boundary layers near the ends, where bending effects are as

important as tension effects. Inside the boundary layer

regions, the effective tension T  Figure 4-12!, and the

components of A  Figures 4-13 to 4-15! change very rapidly

while for the remainder of the riser these quantities are

slowly varying and nearly constant. The effective tensI.on

outside the boundary layers remains fairly constant for the

same reason as in the two-dimensional configuration, However,

this constant value de=reased with changing current direction,

from 0 =10 to
C

90 degrees because the projected riser area

perpendicular to the current direction decreases. For

at cross-sections near s=0.5 where 4 = 90
0

example, looking

because the rigidity of this configuration is very small away

from the ends. However, close to the ends Figures 4-6 to 4-11

indicate that the centerline is a highly tortuous curve. Th.'

complicated transition near the ends is due to the effects of

the boundary conditions and the rigidity of the structure. In

Figures 4-6 and 4-8, we can see that when Bc=90 degrees  i.e.

the current is in the YZ plane!, the riser does not lie on the

YZ plane,  x =0!, because of the effect of the top end

boundary condition  g L!=25 degrees!. The riser, however, is
0

nearly parallel to the current direction away from the ends.

?n conclusion, the highly buoyant riser under study readjusts

its configuration in response to changes of the direction of

the principal external load, i.e. the current, rather than
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degrees and q =0, we obtain p�.5!=6.4, 16.0, 20.4 and 16.9
0

degrees. In this case g �.5! represents rotation angle from
0

the XY plane and therefore the relative rotation of the

current with respect to the cross-section is 5.6, 14, 39.4 and

73.1 degrees which together with Figure 2-1 provides an

explanation of the decrease of the projected arear' Figure

4-].3 for ~l indicates that the maximum torsion  ! , occurs
0 0

when Bc =60 degrees, or for a relative rotation between

current and most cross-sections close to 45 degrees, where the

torque due to the current is maximum. However, the resuting

maximum shear stress due to torsion is small, as expected from

order of magnitude estimates, and is not a critical parameter

in this case. Figures 4-14 and 4-15 show that as the current

direction changes from 8 =0 to 90 degrees, Q and 2" near the
c 0 0

ends increase and de=rease, respectively. The boundary

conditions and the change of current direction provide an

immediate explanation of this change. The bending strain,

in a general three-dimensional configuration can be found

easily from e =  ! R � G   , where   and p are theb

non-dimensional local coordinates of a point of a cross

section within the material layers participating in bending,

So, for example, the maximum bending strain at s=L for Case 1,

Condition 1  two-dimensional configuration! is 0.068 while for

Case 1 and the three-dimensional configuration with 0 =90 andc

g<L!=25 degrees the corresponding value is 0.065. The
0

decrease in the maximum bending strain between the two

excitation conditions is due to the decrease of the overall
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drag due to a decrease of the projected area perpendicular to

the current.



Figure Legend  Figures 4-6 to 4-15'
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90
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Ficiure 4-12: ToVersus yoFor Case 1 And
Four 3-D Exc i tat. ion Cond i t ions





57

t

g I

tt!'

I'

/I

I

II I Gf EGRXJ
2. 92 4/8

4-l4: Ao Versus y For Case l And
Four 3-D Excitation Conditions



58

c..�

I

ClNEGI=IE T R

Ficiure 4-15: iie Versus ye For Case 1 Andn

Four 3-D Excitation Conditions



Coming now to Case 2, where the top end of the riser has an

offset of xT=6.10 m and, due to increase of water leve',
y =82.30 m. Here, again the riser is subject to a l.'net:

T
strong current in the x direction with V �!=1.03 m/s andx

Vx  hz! =1. 55 m/s where Q =h.=85. 34 m. In addition, 4  L! =C and,
0

therefore, the riser has a two-dimensional configuration in

 dashed line! as a function of y . Figure 4-17 shows the
0 0

component of the rate of rotation 0  solid line! and the
 dashed line! as a function of y0effective tension To

Again, all variables plotted are non-dimensional.
The comments pertaining to the response for Case 1,

Condition 1 also hold in the present excitation condition.

The maximum effective tension for Case 2 is equal to 16.6 k.'~

and the maximum tension is 55.6 kN. The tension due to

internal overpressure again amounts to 39.8 kN. The inc eas

of the effective tension with respe t to Case 1, Cond ition 1

is a result of a decreased sag due to the change of the

position of the top end with respect to the lower end of the

the XY plane without torsion. Figures 4-16 and 4-17 show the
results for this excitation condition, obtained be executing

our two-dimensional static program. The initial approximation

for our embedding technique was obtained using the method of

Section 3.2 for a constant current equal to 1.29 m/s, the mean

value of the actual currect. As in Case 1, Condition 1, our

procedure slowly applies the effective weight forces and
modifies the current to the actual linear profile. Figure

4-16 shows the displacement xo  solid line! and the angle
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~F'i ure 4-16: x And 4 Versus y For Case 2
0 0 0

Ficiur e 4-17: tP Ant4 T Versus y For Case 2
0 0 0



riser. Finally, the minimum bending radius for the present

case is 1.05 m, i.e. 16,4%, larger than the corresponding value

for Case l, Condition 1 and therefore les* critical. As

stated before, the value of the minimum bending radius is an
important design parameter and needs to be controlled with
appropriate strain relief units at the ends.
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NUMERICAL RESULTS FOR A BUOYANT RISER WITH A SINGLE

BUOYANCY MODULE

The riser analyzed in this Section is made up of two

flexible tubes with inner diameter of 85.7 mm and outer
diameter of 122.9 mm clamped together and having the same

structural characteristics as in Chapter 4. However, this
riser does not have small uniformly distr ibuted buoyancy

modules as the riser of Chapter 4. The present riser is

supported by a single large buoyancy module placed at
approximately 1/3 of the length from the lower end, which
gives the configuration a lazy S shape. This example was
selected because no numerical data for lazy S configurations
was available to us and only in order to test our computer

pr og r arr for a s ituat ion involv ing sharp changes of the
structural characteristics of the riser such as those

occurring in the presence of large buoyancy module or buoy at

some point along the length of the riser.
1 riser characteristics are: L=88.392 m;

RA=267 MN; A =237.4 cm ; A.=115.4 cm ; o> =8202 .= 2.
The ave ra i

Wa=l25. 55 N/m;

kg/m; p=3. 453. MPa; c=0; vert ical distance of lower support,

s=0, from ocean floor is 7.62 m.
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For the bare riser sections, we used the following

W=251.1 N/m; EI =3.3 kN.mnn 2
additional characteristics:

EI =12.2 kN.m ; GI =0.582 MN.m ; D =0.2458
2 P Dn =0. 1229

I ~' =O. 772
e I

kg/m m =12. 16
a

m=49.93 kg/m, m< =40.47 kg/m m!=0; m =48.638

kg/m; J<<=0.4932 kg.m, J =0.0781 kg.m. The

buoyancy module we

EI =89.1 MN m2'

For the riser sections covered by the

used: W=-7147.4 N/m; KI =89.1 MN.m

GI =69.1 MN.m ; D =D =1.269 m,P 2 P" =20.53
e

m=566. 4 kg/m;

=1296.4 kg/mm< =556. 9 kg/m; m~
a

J =106 e 51 kgemg J =0 e

mn
a

=1271. 4 kg/m;

In order to model the transition of

the structural rigidities between the bare riser sections and

those covered by the buoyancy module, we assumed that the bare

riser rigidities increased linearly to the above rigidities

within 0.2 m from each end of the buoyancy module. The

physical length of the buoyancy module is L =1.5 m so that

The lower end of the buoyancy module is atI.=l + L + 1
1 b 2

s=l from the lower end.
1

In thi.s work we studied two two-dimensional excitation

conditions at a water depth of 72.62 m with h�=h-=65 m, xT=20

m and yT=62 m in the presence of unidirectional strong

currents. In the first case we used a constant current with

V =2 m/s and the second case a linear current with V �!=1.03
X X

m/s and Vx  hz ! = 1. 55 m/s. Given that the a~erage effective

weight per unit length W =125.55 N/m is now significant as

compared to the current force due to the mean value of the

bare riser sections extend for 1 =28.964 m and 1 =57.928 m
1 2

from s=0 and s=L, respectively.
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current, 0.5p C D V�IV�I where D =0.263 m is the mean
w 0

diameter, we started the embedding procedure using as initial
current a very strong constant current with V =5 m/s for which
the initial analytical approximation of Section 3.2 is
expected to be reasonable and solved the problem for V =5 m/sX

accurately including all forces, Using this converged
solution for v =5 m/s as initial approximation, we solved the
problem for a constant current V�=3.5 m/s using our embedding
technique. This last solution was subsequently used as
initial approximation for the solution of a static problem for
a conStant current V =2.75 m/s determined using our embedding

X

technique. Finally, this solution for V =2 ' 75 m/s was used asX

initial approximation of our first static problem invo!ving a
constant current with speed V =2 m/s. The solution

X

for V =2
X

m/s was used as initial approximation for the solution of our
second static excitation case involving a linear current. In
order to accurately resolve the structural. changes at the ends
of the buoyancy module, a sufficiently large number of initial
points need to be used to start the process correctly' So,
for example, our initial analytical solution for V�=5 m/s used
120 uniformly distributed points, which provides three
discretization points within the buoyancy module. Our final
solut ion for the constant and linear currents involves l8
discretization points within the buoyancy module out of a
total of 195 dicret ization points. The remaining 57
discretization points beyond the 120 original points are
densely distributed close to s=O, s=L,, s=l>, s=l> +L> to



66

provide accurate resolution of regions involving sharp changes

of the solution. The addition of new discretization points

beyond the original l20 is done automatically by the program

in order to reduce and equidistribute the error on the final

mesh [ 18].

Figures 5-l to 5-3 and 5-4 to 5-6 show our results for the

constant 2 m/s current and the linear current respectively.

Figures 5-1 and 5-4 show the displacement x  solid line! and
0

the angle y in degrees  dashed line! as a function of yo.
0

Subscript o denoting static quantities was dropped for

convenience in the figures. Figures 5-2 and 5-5 show the ra e

of rotation Qo  solid line! and the effective tension Tpn

 dashed line! as a function of y . Figures 5-3 and 5-6 sho .
0

the shear force Qo  solid line! and the tension in the

material P  dashed line! as a function of y . All variables
0

plotted except yo are non-dimensional. Lengths are

non-dimensionalized by I. and forces by W L =11. 1 kN.
a

For the case of constant current 2 m/s,the buoyancy module

lies approximately between yo =O.l809 and 0.1854 and for the

case of the linear current between yo =0.2367 and 0.2284. In

terms of arc length the buoyancy module lies approximately

between s=0.3277 and 0.344/. The plots of 4 , 0 , T , Q andn
0 ' 0' 0' 0

P< indicate a very sharp change of the solution near the ends

and near the position of the buoyancy module, as expected.

For the constant current case the minimum bending radius

occurs at s=0 and is approximately equal to 0.406 m, while for

the weaker linear current case, this occurs near the buoyanc;
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non-uniform systems.
Ne expect however that strain relief

units at the ends and the connection with buoys and more
uniformly distributed modules will provide the tools to

achieve better performance.

module and is equal t.o 0.440 m. This occurs because the
relative importance of the buoyancy force from the module as
compared to the normal drag force increased from the first to
the second excitation case. The above values of the bending
radii are excessively small which indicates that improvements
in the design of the system should be made. This was not
attempted because the present system and excitation were only
chosen to exhibit the applicability of our program for very
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~ri ure 5-i: xeAnd $ Versus ye
For Constant current 2 m/s

~Fi ure 5-2: Ae And T Versus ye
For Constant current 2 m/s
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5-3: Q~ And P Versus y0
For Constant t urrer t 2 rn/s
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Ficiure 5-4: xsAsd 4 Versus y
For A Linear Current

~Fi ure 5-5: Qe Aud Te Ve:sus yT]

For A Linear Curr en'



71

5-6: Qo And PO Versus
For A !.inear Current
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